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Continuous-variable multipartite unlockable bound entangled Gaussian states
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We investigate continuous-variable (CV) multipartite unlockable bound entangled states. Comparing with the
qubit multipartite unlockable bound entangled states, CV multipartite unlockable bound entangled states present
some new and different properties. CV multipartite unlockable bound entangled states may serve as a useful
quantum resource for new multiparty communication schemes. The experimental protocol for generating CV
unlockable bound entangled states is proposed with a setup that is, at present, accessible.
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Quantum entanglement is a striking property of composite
quantum systems that lies at the heart of the fundamental
quantum information protocols, which has led to ongoing
efforts for its quantitative and qualitative characterization.
While entanglement of pure bipartite states is well understood,
the entanglement of mixed and multipartite systems is still
under intense research. Entanglement is a very fragile resource,
easily destroyed by the decoherence processes to become
mixed owing to unwanted coupling with the environment.
Therefore, it is important to know which mixed states can
be distilled to maximally entangled states from many identical
copies by means of local operations and classical communica-
tion (LOCC). A surprising discovery in this area is that there
exist mixed entangled states from which no pure entanglement
can be distilled, and these states are called bound entangled
states [1]. This new class of states is between separable and
free entangled states. Much effort has been devoted to the
characterization and detection of bound entanglement [2], and
various properties and applications of bound entanglement
have been found. The distillability of multipartite entangled
states, however, is much more complicated than that of bi-
partite entangled states. Usually, a multipartite entangled state
is bound entangled if no pure entanglement can be distilled
between any two parties by LOCC when all the parties remain
spatially separated from each other. However, a multipartite
bound entangled state may be unlocked or activated. If all the
parties are organized into several groups and we let each group
join together and perform collective quantum operations, then
pure entanglement may be distilled between two parties within
some of the groups, and this state will be called an unlocked or
activable bound entangled state. A famous class of multipartite
unlockable bound entangled states is the Smolin state [3],
which is a four-qubit state and was generalized recently
into an even number of qubits [4,5]. These states have been
applied in remote information concentration [6], quantum
secret sharing [7], and superactivation [8,9]. Particularly, the
link between multipartite unlockable bound entangled states
and the stabilizer formalism was found [10]. The properties
of the multipartite unlockable bound entangled states can be
easily explained from the stabilizer formalism. Recently, the
four-qubit unlockable bound entangled state (Smolin state)
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was demonstrated experimentally with polarization photons
[11,12] and ions [13].

Most of the concepts of quantum information and com-
putation have been initially developed for discrete quantum
variables, in particular two-level or spin- 1

2 quantum variables
(qubits). In parallel, quantum variables with a continuous
spectrum, such as the position and momentum of a particle or
amplitude and phase quadrature of an electromagnetic field,
in informational or computational processes have attracted a
lot of interest and appear to yield very promising perspec-
tives concerning both experimental realizations and general
theoretical insights [14,15] due to relative simplicity and
high efficiency in the generation, manipulation, and detection
of continuous-variable (CV) states. Bound entanglement of
bipartite states has also been considered for continuous
variables, and the nontrivial examples of bound entangled
states for CV have been constructed [16–19]. However,
the research of CV bound entanglement far lags that for
discrete-variable (DV). In this paper, we first exploit the
stabilizer formalism to study the CV multipartite unlockable
bound entangled states. Comparing with the qubit multi-
partite unlockable bound entangled states, CV multipartite
unlockable bound entangled states present some different
properties. We also study the four-mode multipartite un-
lockable bound entangled states in detail and present the
experimental protocol for generating CV unlockable bound
entangled states.

For CV systems, the Weyl-Heisenberg group [20], which is
the group of phase-space displacements, is a Lie group with
generators x̂ = (â + â†)/

√
2 (quadrature amplitude or posi-

tion) and p̂ = −i(â − â†)/
√

2 (quadrature phase or momen-
tum) satisfying the canonical commutation relation [x̂,p̂] = i

(with h̄ = 1). The single-mode Pauli operators (so termed in
analogy with qubit systems) are defined as X(s) = exp[−isp̂]
and Z(t) = exp[it x̂] with s, t ∈ R. The Pauli operator X(s) is a
position-translation operator, which acts on the computational
basis of position eigenstates {|q〉; q ∈R} as X(s)|q〉 = |q + s〉,
whereas Z is a momentum-translation operator, which acts on
the momentum eigenstates as Z(t)|p〉 = |p + t〉. These oper-
ators are noncommutative and obey the identity X(s)Z(t) =
e−istZ(t)X(s). The Pauli operators for one mode can be used to
construct a set of Pauli operators {Xi(si),Zi(ti); i = 1, . . . ,n}
for n-mode systems. The n-mode Pauli group is expressed as

Gn = {X1(s1)Z1(t1) ⊗ · · · ⊗ Xn(sn)Zn(tn) : si,ti ∈ R}. (1)
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The elements of this group can expressed in terms of a linear
combination of the canonical operators x̂i and p̂i indexed by
a vector v = (s1, . . . ,sn,t1, . . . ,tn) ∈ R2n:

U (v) = exp

[
i

n∑
i=1

(−si p̂i + ti x̂i)

]
. (2)

The commutative relationship between any two element
operators in an n-mode Pauli group is expressed as

U (v)U (v′) = eiω(v,v′)U (v′)U (v), (3)

where ω(v,v′) = ∑n
i=1(s ′

i ti − si t
′
i ).

Suppose we choose commuting operators U1(v1), U2(v2),
. . .,Uk(vk) from Gn, and thus, the k independent vectors v1,
. . ., vk must satisfy ω(vi ,vj ) = 0 for all i, j [see Eq. (3)]. Then
we have an Abelian subgroup,

S =
{

U (u) : u =
k∑

i=1

aivi , ai ∈ R

}
, (4)

in which any two operators U (u) and U (u′) com-
mute. The Abelian subgroup may be expressed by S =
〈U1(v1),U2(v2), . . .,Uk(vk)〉, which denotes the Abelian sub-
group generated by them. A state |ψ〉 is said to be stabilized
by S, or S is the stabilizer of |ψ〉, if Ui(vi)|ψ〉 = |ψ〉,
where i = 1,2, . . . ,k. The stabilizer formalism for CV systems
[21–24] has been used to study the CV graph state [25,26].
The Abelian subgroup S can be conveniently defined by
its Lie algebra, S ′ = 〈H1,H2, . . . ,Hk〉. The operators Hi =
viRT are the linear combination of the canonical operators
R = (x̂1, . . . ,x̂n,p̂1, . . . ,p̂n). Any two operators Hi and Hj

commute. S ′ is referred to as the nullifier of |ψ〉 since
Hi |ψ〉 = 0, i = 1,2, . . . ,k. Every nullifier is Hermitian and
so is observable. Thus, the state |ψ〉 can be expressed in the
simple nullifier representation.

All the states stabilized by S constitute a subspace denoted
by VS . There is a unique pure state for the n-mode system
stabilized by S if S has n independent stabilizer generators
[thus, S = 〈U1(v1),U2(v2), . . . ,Un(vn)〉 are called a complete
set of stabilizer generators]. When S has k independent
stabilizer generators that are less than the total mode number
of the n-mode system, the states in the subspace VS will be
more than one. Therefore, the maximally mixed state over VS

is expressed by ρS = PS/tr(PS), where

PS =
∫

dη1 . . . dηkU1(η1v1) . . . Uk(ηkvk) (5)

is the projection operator onto VS . Note that the stabilized sub-
space VS is the subspace spanned by the simultaneous eigen-
states of the stabilizer generator {U1(v1),U2(v2), . . . ,Uk(vk)}
with the eigenvalues {1,1, . . . ,1} (corresponding to simul-
taneous eigenstates of the nullifier {H1,H2, . . . ,Hk} with
the eigenvalues {0,0, . . . ,0}). In general, any orthogonal
subspaces V

{λ1,...,λk}
S may be expressed by the simultaneous

eigenstates of {U1(v1),U2(v2), . . . ,Uk(vk)} with the eigen-
values {eiλ1 , . . . ,eiλk } (corresponding to simultaneous eigen-
states of the nullifier {H1,H2, . . . ,Hk} with the eigenvalues

{λ1, . . . ,λk}). The corresponding maximally mixed state over
V

{λ1,...,λk}
S is ρ

{λ1,...,λk}
S = P

{λ1,...,λk}
S /tr(P {λ1,...,λk}

S ), where

P
{λ1,...,λk}
S =

∫
dη1 . . . dηke

iλ1η1U1(η1v1) . . . eiλkηkUk(ηkvk)

(6)

is the projection operator onto V
{λ1,...,λk}
S . All these subspaces

have the same dimensions and form an orthogonal decompo-
sition of the whole space.

A partition of the n-mode system {M1,M2, . . . ,Mn} is
defined as a set of its proper subsets {V1,V2, . . . ,Vm}, in
which Vi ∩ Vj = o/(i �= j ), ∪m

i=1Vi = {M1,M2, . . . ,Mn},
and |Vi | denotes the number of modes in Vi . The
k independent stabilizer generators can be split into
local stabilizer generators with respect to the partition
{V1,V2, . . . ,Vm}{{U (V1)

1 (v1), . . . U (V1)
k (vk)},{U (V2)

1 (v1), . . . U (V2)
k

(vk)}, . . . ,{U (Vm)
1 (v1), . . . U (Vm)

k (vk)}}:

U
(Vα )
β (vβ) = exp

[
i
∑
j∈Vα

(sj p̂j + tj x̂j )

]
. (7)

If all local stabilizer generators commute each other, the
maximally mixed state ρS for an n-mode system stabilized
by {U1(v1),U2(v2), . . . ,Uk(vk)} is said to be separable with
respect to the partition {V1,V2, . . . ,Vm} [10], which may be
rewritten with the product form

ρS =
∫(

λ
U

(V1)
1 +···+λ

U
(Vm )
1

)
=0

dλU
(V1)
1 · · · dλU

(Vm )
1

×
∫(

λ
U

(V1)
2 +···+λ

U
(Vm )
2

)
=0

dλU
(V1)
2 · · · dλU

(Vm )
2

×
∫(

λ
U

(V1)
k +···+λ

U
(Vm )
k

)
=0

dλU
(V1)
k · · · dλU

(Vm )
k

×ρ
{λU

(V1)
1 ,...,λ

U
(V1)
k }

S(V1) ⊗ ρ
{λU

(V2)
1 ,...,λ

U
(V2)
k }

S(V2)

⊗ρ
{λU

(Vm )
1 ,...,λ

U
(Vm )
k }

S(Vm ) , (8)

where ρ
{λU

(Vj )
1 ,...,λ

U
(Vj )
k }

S
(Vj ) is given in Eq. (6). Moreover, if ρS is

separable with respect to the partition {V1,V2, . . . ,Vm} and the
local stabilizer generators S(Vj ) = 〈U (Vj )

1 (v1), . . . ,U
(Vj )
k (vk)〉 in

one of the subsets Vj contain the number of the independent
stabilizer generators equal to the number of modes in Vj (S(Vj )

is a complete set of stabilizer generators on Vj ), pure entangle-
ment among the modes inside Vj can be distilled [10] by letting
the modes in all other subsets V1,V2, . . . ,Vi �=j , . . . ,Vm join
together and perform joint measurements. Thus, the maximally
mixed state ρS for n-mode system stabilized subspace VS is
called an unlockable bound entangled state.

Now we consider a four-mode system with two independent
stabilizers:

H1 = x̂1 + x̂2 + x̂3 + x̂4 → 0

U1 = Z1(1)Z2(1)Z3(1)Z4(1) → 1,
(9)

H2 = p̂1 − p̂2 + p̂3 − p̂4 → 0

U2 = X1(1)X2(−1)X3(1)X4(−1) → 1,
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which is analogous to the four-qubit unlockable bound
entangled state, also called the Smolin state [3].
However, a CV four-mode unlockable bound entangled
state has some distinct properties that compare with
the counterpart of qubit. Considering the 2:2 partition
{{M1,M2},{M3,M4}}, we have local stabilizer generators
{{U ({1,2})

1 = Z1(1)Z2(1),U ({1,2})
2 = X1(1)X2(−1)},{U ({3,4})

1 =
Z3(1)Z4(1),U ({3,4})

2 = X3(1)X4(−1)}}, which commute each
other. Therefore, the maximally mixed state ρ

(4)
S stabilized by

U1 and U2 may be expressed by the product form with respect
to the partition {{M1,M2},{M3,M4}}:

ρ
(4)
S = 1

tr(PS)

∫
dη1dη2Z1(η1)Z2(η1)Z3(η1)Z4(η1)

× X1(η2)X2(−η2)X3(η2)X4(−η2)

=
∫

dλ1dλ2ρ
{λ1,λ2}
S({M1 ,M2}) ⊗ ρ

{−λ1,−λ2}
S({M3 ,M4}) , (10)

where ρ
{λ1,λ2}
S({M1 ,M2}) = ∫

dη1dη2e
iλ1η1Z1(η1)Z2(η1)eiλ2η2X1(η2)X2

(−η2) and ρ
{−λ1,−λ2}
S({M3 ,M4}) is similar to ρ

{λ1,λ2}
S({M1 ,M2}) . ρ

(4)
S

is separable with respect to the 2:2 partition
{{M1,M2},{M3,M4}}. Furthermore, we consider the 2:2
partition {{M1,M4},{M2,M3}}, whose properties are the same
as the partition {{M1,M2},{M3,M4}}. However, the partition
{{M1,M3},{M2,M4}} is quite different since its local stabilizer
generators do not commute in the same subset. Thus, ρ

(4)
S is

inseparable with respect to the partition {{M1,M3},{M2,M4}}.
Comparing the CV four-mode unlockable bound entangled
state, the four-qubit unlockable bound entangled state is
invariant under arbitrary permutation of the four qubits and is
separable with respect to any 2:2 partition.

Nondistillabitily. When the four parties sharing four modes
respectively are located in separated stations (thus, they cannot
perform joint quantum operation), they cannot distill any pure
entanglement by LOCC. This comes from the fact the state is
separable with respect to the partitions {{M1,M2},{M3,M4}}
and {{M1,M4},{M2,M3}}. In detail, since the state is separable
across {{M1,M2},{M3,M4}}, local measurements and classical
communication for M1 and M3 (M1 and M4; M2 and M3;
M2 and M4) cannot establish any entanglement between M2

and M4 (M2 and M3; M1 and M4; M1 and M3, respectively)
since the amount of entanglement cannot be increased by local
operations and classical communication [27,28]. Consider-
ing the state is separable across {{M1,M4},{M2,M3}}, local
measurements and classical communication for M1 and M2

(M1 and M3; M4 and M2; M4 and M3) cannot establish any
entanglement between M4 and M3 (M4 and M2; M1 and M3;
M1 and M2, respectively). Thus, by definition, this state is
called a multipartite bound entangled state.

Unlockability. Though this state is nondistillable under
LOCC when all the modes remain spatially separated from
each other, its entanglement can be unlocked. For example,
considering the state is separable across {{M1,M2},{M3,M4}},
performing the joint Bell-basis measurement on M1 and M4

(M2 and M3) can establish pure entanglement between M2 and
M3 (M1 and M4) [see Eq. (9)]. However, performing the joint
Bell-basis measurement on M1 and M3 (M2 and M4) cannot
establish any entanglement between M2 and M4 (M1 and M3)
since the local stabilizer generators of {{M1,M3},{M2,M4}}

1 2' 2 3'

3 4' 4

1'

A B

C D

E

FIG. 1. (Color online) The state ρ
(S)
1,2,3,4

⊗
ρ

(S)
1′,2′,3′,4′ distilled into

an EPR pair between D and E by local measurements.

do not commute in the same subset. Considering that the state
is separable across {{M1,M4},{M2,M3}}, the joint Bell-basis
measurement performing on M1 and M2 (M4 and M3) can
establish pure entanglement between M4 and M3 (M1 and
M2). However, performing the joint Bell-basis measurement
on M1 and M3 (M4 and M2) cannot establish any entanglement
between M4 and M2 (M1 and M3).

The Einstein-Podolskyo-Rosen (EPR) entangled state can
also be distilled by employing the tensor product of two
identical CV four-mode unlockable bound entangled states,
which is analogous to the distillation process for the four-qubit
unlockable bound entangled state, also called superactivation
of bound entanglement [8]. Two identical CV four-mode
unlockable bound entangled states ρ

(S)
1,2,3,4 and ρ

(S)
1′,2′,3′,4′ are

assigned to five remote parties, A, B, C, D, and E, as shown
in Fig. 1. Thus, parties A, B, C, and D each have one mode,
1, 2, 3, and 4, respectively, of state ρ

(S)
1,2,3,4, and similarly,

parties A, B, C, and E each have one mode, 2′,3′,4′, and 1′,
of state ρ

(S)
1′,2′,3′,4′ . Parties A, B, and C perform joint Bell-basis

measurement respectively and then send their measured results
to D. Party D translates the measurement results into mode 4,
which is expressed by

x̂ ′
4 = x̂4 + (x̂1 + x̂2′ ) + (x̂2 + x̂3′ ) + (x̂3 + x̂4′ )

= x̂2′ + x̂3′ + x̂4′ ,
(11)

p̂′
4 = p̂4 − (p̂1 − p̂2′ ) + (p̂2 − p̂3′ ) − (p̂3 − p̂4′)

= p̂2′ − p̂3′ + p̂4′ .

Thus, an EPR pair between D and E is distilled with x̂1′ + x̂ ′
4 →

0 and p̂1′ − p̂′
4 → 0.

The CV four-mode unlockable bound entangled state may
be generalized into 2n modes, whose nullifiers (stabilizer
generators) are expressed by

H
(2n)
1 = x̂1 + x̂2 + x̂3 + x̂4 + · · · + x̂2n−1 + x̂2n,

(12)
H

(2n)
2 = p̂1 − p̂2 + p̂3 − p̂4 + · · · + p̂2n−1 − p̂2n.

It can easily be seen that the maximally mixed state ρ
(2n)
S

stabilized by U 2n
1 and U 2n

2 is not separable for any 2:2 : . . . : 2
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FIG. 2. (Color online) The generation of a four-mode unlockable
bound entangled state. GRNG denotes the Gaussian random number
generator. X and Z are the position- and momentum-translation Pauli
operators, respectively.

partition. Applying this method, many more CV unlockable
bound entangled states can be found and defined.

The above analyses of the CV multipartite unlockable
bound entangled states based on the stabilizer formula re-
quire infinite energy and stand as an idealized limit. Now
we investigate the four-mode unlockable bound entangled
state with finite squeezing and present the protocol to generate
it experimentally. As shown in Fig. 2, two pairs, (âEPR1,âEPR2)
and (b̂EPR1,b̂EPR2), of EPR entangled states [also called the two-
mode squeezed state |ψ(r)〉 = ∑

n λn
√

1 − λ2|n,n〉 with λ =
tanh r , where r is the squeezing factor] are distributed into four
stations, M1(âEPR1),M2(âEPR2),M3(b̂EPR1), and M4(b̂EPR2), re-
spectively. The EPR entangled state has a very strong correla-
tion property, namely, that both its sum-amplitude quadrature
variance 〈δ2(x̂a(b)EPR1 + x̂a(b)EPR2 )〉 = e−2r and its difference-
phase quadrature variance 〈δ2(p̂a(b)EPR1 − p̂a(b)EPR2 )〉 = e−2r are
less than the quantum noise limit [29,30]. The position and
momentum of two pairs, (âEPR1,âEPR2) and (b̂EPR1,b̂EPR2),
are translated random using two Gaussian random number
generators (GRNGs), as shown in Fig. 2. This random
operation applied exhibits a Gaussian distribution; hence, the
standard deviation of the GRNG σGRNG provides a complete
characterization of its strength. The resulting state is expressed
by

ĉ1 = âEPR1 + xGRNG1 − pGRNG2,

ĉ2 = âEPR2 + xGRNG1 + pGRNG2,
(13)

ĉ3 = b̂EPR1 − xGRNG1 + pGRNG2,

ĉ4 = b̂EPR2 − xGRNG1 − pGRNG2,

and the correlation variances of two independent stabiliz-
ers of this state are 〈δ2(x̂c1 + x̂c2 + x̂c3 + x̂c4 )〉 = 2e−2r and
〈δ2(p̂c1 − p̂c2 + p̂c3 − p̂c4 )〉 = 2e−2r . The output state will
exactly become that in Eq. (9) [and will be expressed by the
density operator Eq. (10)] when r → ∞ and σGRNG → ∞.
Note that λ1 and λ2 for GRNG1 and GRNG2 in Fig. 2

correspond to those of the density operator ρ
(4)
S of Eq. (10).

When λ1 = λ2 = 0, it corresponds to two original input
pairs of the EPR entangled state without performing GRNG,
which may be expressed by the density operator ρ

{0,0}
S({M1 ,M2}) =∫

dη1dη2Z1(η1)Z2(η1)X1(η2)X2(−η2) (and ρ
{0,0}
S({M3 ,M4}) is simi-

lar to ρ
{0,0}
S({M1 ,M2}) ) or x̂a(b)EPR1 + x̂a(b)EPR2 = p̂a(b)EPR1 − p̂a(b)EPR2 →

0. Here, due to finite squeezing, the strength of the GRNG
does not need to be infinite but will have a lower limit value
depending on the squeezing factor r .

Giedke et al. [31] give a necessary and sufficient condition
for separability of Gaussian states of bipartite systems of arbi-
trarily many modes. The condition provides an operational cri-
terion since it can be checked by simple computation with the
covariance matrix (CM). The Wigner distribution of the Gaus-
sian states can be constructed as W (R) = π−N exp(−RT ·
�−1 · R), where R = (x1, p1, x2, p2, . . . , xN , pN )T is the
vector of phase-space variables. This implicitly defines the
elements of the CM �, which up to local displacements
provides a complete description of the Gaussian states [14,15].
Thus, CM of the four-mode unlockable bound entangled state
with finite squeezing can be derived by Eq. (3) and may be
used to achieve the condition for separability [31].

The state ĉ1,ĉ2,ĉ3,ĉ4 with respect to the partition
{{M1,M2},{M3,M4}} is always separable independent of the
strength of the GRNG, as seen in Fig. 2, since the amount
of entanglement cannot be increased by local operations
and classical communication [27,28]. However, the separa-
bility of the state ĉ1,ĉ2,ĉ3,ĉ4 with respect to the partition
{{M1,M4},{M2,M3}} depends on the strength of the GRNG.
The state ĉ1,ĉ2,ĉ3,ĉ4 can be generated equivalently, as shown
in Fig. 3. Thus, we may utilize directly the separability criterion
in terms of measurable squeezing variances of two-mode
states:

〈δ2(x̂1 + x̂2)〉 + 〈δ2(p̂1 − p̂2)〉 � 2. (14)

This is a sufficient criterion for separability for any two-mode
state, expressed in a form suitable for experimental verification

λλλλ

λλλλ

λλλλ

λλλλ

FIG. 3. (Color online) The four-mode unlockable bound entan-
gled state in Fig. 1 is generated equivalently while considering the
partition {{M1,M4},{M2,M3}}. BS indicates beam splitter.
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Mˆ 'a

GRNG1'
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ˆ 'b
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ĉ

ĉ
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ĉ

λλλλ

λλλλ
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λλλλ

GRNG2'

M

50:50 BS

50:50 BS

FIG. 4. (Color online) The four-mode unlockable bound entan-
gled state in Fig. 2 is generated equivalently while considering the
partition {{M1,M3},{M2,M4}}.

[29,30]. The lowest limit value of the strength of the GRNG1′
can be obtained by〈

δ2
(
x̂a′

EPR1
+ x̂a′

EPR2

)〉 + 4〈δ2(x̂GRNG1′)〉
+ 〈

δ2
(
p̂a′

EPR1
− p̂a′

EPR2

)〉
� 2

⇒ 〈δ2(x̂GRNG1′ )〉 � (1 − e−2r )/2. (15)

The lowest limit value of the strength of the GRNG2′ can
be also obtained with 〈δ2(p̂GRNG2′)〉 � (1 − e−2r )/2. Note that
whether this lowest value for GRNG is the necessary and
sufficient condition for separability of the state ĉ1,ĉ2,ĉ3,ĉ4

with respect to the partition {{M1,M4},{M2,M3}} still must
be further studied by applying the necessary and sufficient
condition for separability of Gaussian states of bipartite
systems of arbitrarily many modes to check the separability
[31]. Considering the partition {{M1,M3},{M2,M4}}, the state
ĉ1,ĉ2,ĉ3,ĉ4 in Fig. 2 can be generated equivalently, as shown
in Fig. 4. It is easily seen that there is an EPR entangled state
without any translation operations. Therefore, the four-mode
unlockable bound entangled state is always entangled with
respect to the partition {{M1,M3},{M2,M4}}. Moreover, the
EPR entanglement between modes 1 and 2 (or 3 and 4) can
be distilled by letting modes 3 and 4 (1 and 2) come together
and performing the joint Bell-basis measurement, and the re-
sulting EPR entanglement becomes 〈δ2(x̂EPR1(3) + x̂EPR2(4))〉 =
2e−2r < 1 and 〈δ2(p̂EPR1(3) − p̂EPR2(4))〉 = 2e−2r < 1. [Here

the EPR entanglement is generated unconditionally by dis-
placing the results of the joint Bell-basis measurement on
mode 1 (or 2) with a gain factor of 1 [32]. Thus, a certain
initial degree of squeezing r > ln(2)/2 should be necessary
in order to have entanglement activation.] However, the EPR
entanglement between modes 1 and 3 (or 2 and 4) cannot be
distilled by letting modes 2 and 4 (1 and 3) come together and
performing the joint Bell-basis measurement.

Here we would like to emphasize that the definition of the
multipartite bound entangled state in this paper is completely
different from the bipartite bound entangled Gaussian states
defined in Ref. [17]. In Ref. [17], they study the bound
entangled Gaussian states for a bipartite system with an
arbitrary number of modes in each party. The bipartite bound
entangled Gaussian states are positive partial transpose and
thus are undistillable, and they are not separable. According
to the definition of the bipartite bound entangled Gaussian
states defined in Ref. [17], the CV four-mode unlockable
bound entangled state in this paper has three possibilities for
bipartition: {{M1,M2},{M3,M4}}, {{M1,M4},{M2,M3}}, and
{{M1,M3},{M2,M4}}. The bipartition {{M1,M2},{M3,M4}}
(and {{M1,M4},{M2,M3}}) of the CV four-mode unlockable
bound entangled state is separable, which does not hold for
a bipartite bound entangled Gaussian state. The bipartition
{{M1,M3},{M2,M4}} of the CV four-mode unlockable bound
entangled state is inseparable and also nonpositive partial
transpose; thus, it is entangled and distillable.

In conclusion, we have introduced CV multipartite un-
lockable bound entangled states. It is interesting to further
investigate the relationship between the finite squeezing and
the strength of the GRNG for more complex CV multipartite
unlockable bound entangled states, which relates to the sepa-
rability problem. CV multipartite unlockable bound entangled
states may serve as a useful quantum resource for multiparty
communication schemes in the continuous-variable field, such
as remote information concentration, quantum secret sharing,
and superactivation. We believe that this work will contribute
to deeper understanding of CV entanglement.
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